Section 1.5 Inverse Functions	Course Number
Objective: In this lesson you learned how to find inverses of graphically and algebraically.	
Important Vocabulary Define each term o	r concept.
Inverse function	
One-to-one	
Horizontal Line Test	

I. The Inverse of a Function (Pages 120–122)

For a function f that is defined by a set of ordered pairs, to form the inverse function of f, . . .

For a function f and its inverse f^{-1} , the domain of f is equal to

_____, and the range of *f* is equal to

To verify that two functions, f and g, are inverses of each other,

. . .

Example 1: Verify that the functions f(x) = 2x - 3 and $g(x) = \frac{x+3}{2}$ are inverses of each other.

II. The Graph of an Inverse Function (Page 123)

If the point (a, b) lies on the graph of f, then the point $(_,_]$ lies on the graph of f^{-1} and vice versa. The graph of f^{-1} is a reflection of the graph of f in the line

What you should learn How to verify graphically and numerically that two functions are inverses of each other

What you should learn How to find inverse functions informally and verify that two functions are inverses of each other

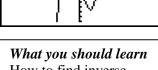
III. The Existence of an Inverse Function (Page 124)

A function f has an inverse f^{-1} if and only if . . .

If a function is one-to-one, that means

To tell whether a function is one-to-one from its graph, ...

Example 2: Does the graph of the function at the right have an inverse function? Explain.


IV. Finding Inverse Functions Algebraically (Pages 125–126)


To find the inverse of a function *f* algebraically, ...

- 1)
- 2)
- 3)
- 4)
- 5)

Example 3: Find the inverse (if it exists) of $(x) \quad 4x-5$ What you should learn How to use graphs of functions to decide

inverses

How to find inverse functions algebraically