Section 1.5 Inverse Functions

Objective: In this lesson you learned how to find inverses of functions graphically and algebraically.

Course Number
Instructor

Date

Important Vocabulary
Define each term or concept.

Inverse function

One-to-one

Horizontal Line Test

I. The Inverse of a Function (Pages 120-122)

For a function f that is defined by a set of ordered pairs, to form the inverse function of f, \ldots

What you should learn

How to find inverse functions informally and verify that two functions are inverses of each other

For a function f and its inverse f^{-1}, the domain of f is equal to
\qquad , and the range of f is equal to
\qquad _.

To verify that two functions, f and g, are inverses of each other,

Example 1: Verify that the functions $f(x)=2 x-3$ and $g(x)=\frac{x+3}{2}$ are inverses of each other.
II. The Graph of an Inverse Function (Page 123)

If the point (a, b) lies on the graph of f, then the point
\qquad) lies on the graph of f^{-1} and vice versa. The graph of f^{-1} is a reflection of the graph of f in the line

What you should learn

How to verify graphically and numerically that two functions are inverses of each other
\qquad .

III. The Existence of an Inverse Function (Page 124)

A function f has an inverse f^{-1} if and only if ...

What you should learn How to use graphs of functions to decide inverses

If a function is one-to-one, that means . . .

To tell whether a function is one-to-one from its graph, . . .

Example 2: Does the graph of the function at the right have an inverse function? Explain.

What you should learn
How to find inverse functions algebraically

To find the inverse of a function f algebraically, \ldots

IV. Finding Inverse Functions Algebraically

(Pages 125-126)
1)
2)
3)
4)
5)

Example 3: Find the inverse (if it exists) of (x) $4 x-5$

